
1

Hydroinformatics
ILO-5 Instructions

Prerequisites

The database server and ODM database that you will be accessing in this ILO was set up ahead of time
for the class. To complete this exercise, you must first install the R statistical computing software. You
can download R from http://www.r-project.org.

Getting the RODBC Package for R

R is structured such that you can download “packages” that contain additional functionality written by
developers all over the world. We want to download a package containing functionality that will enable
us to connect R to the Little Bear River ODM database on the class server and query required data to get
it into R where we can work with it. If you already have the “RODBC” package, you can skip this section.
Otherwise, use the following steps to download and install the RODBC package.

Open the R software. The following window will open:

What you see is the R graphical user interface, with the R Console window open. The R console is
essentially a command prompt at which you can write and execute R commands. In the “Packages”
drop down list at the top of the window, select “Install Packages.” The following window will appear.

http://www.r-project.org/

2

This is a list of mirrored servers located all over the world from which R packages can be downloaded.
Select the one called “USA (CA 1)” and then click the “OK” button. The following window will appear.

Scroll down in the list until you find “RODBC” and then select it by clicking on it. Then click the OK
button. When you click OK, you will notice that a window pops up indicating that R is downloading the
selected package. Once it has been downloaded, it will automatically be sent to the R console for
installation. Once it is successfully installed, your R console will look like the following figure. Your
RODBC package is now installed and ready to use.

3

NOTE: You only have to install the RODBC package once. After that, it will be available for use every
time you open R.

Connecting R to the Little Bear River ODM Database

While you can type individual lines of R code at the command prompt in the R Console window, it is
better to create a new R Script within which you can create your code so you can save your script for
later. To create a new script, click on the “File” drop down menu and select “New script.” A new R
Editor window will open within which you can write your code.

4

To get data from the Little Bear River ODM database into R, we have to perform a few steps: 1) load the
RODBC package library so we can use its functionality; 2) create a connection to the Little Bear River
ODM Database so we can execute SQL queries; and 3) execute a query to get data into R. We will go
through these step-by-step.

Load the RODBC Library

To load the RODBC library, type the following code into your R Editor script window:

#Load the RODBC library
library(RODBC)

In R, the “#” character tells the R console that the following characters on that line are a comment and
that the entire line of code following that character should be ignored. So, in the above example, only
the second line of code would be executed. This is really handy if you want to add text comments to
your code so you remember what each line or block of code does.

To send a line of code or a selection of lines of code to the R console for execution, select them in your
script editor window by clicking and dragging a selection and then either press ‘Control + R’ on your
keyboard or click the third button on the toolbar. After the lines of code above have been executed,
your R console will look like the following:

5

Connect to the LittleBearRiverODM Database on the Class Server

Now that the RODBC library is loaded, we can use it to connect to the Little Bear River ODM database.
Using RODBC, we will open a connection, or “channel,” to the Little Bear River ODM database using the
following code:

#Open a channel to the Little Bear River ODM database
channel <- odbcDriverConnect("driver=SQL Server Native Client 10.0")

When you execute the above commands in the R console, a database connection window will pop up.
Make sure you change the Server name to “hydroserver.uwrl.usu.edu,” uncheck the box next to “Use
Trusted Connection” and input “Hydroinformatics” as the “Login ID” and “F4ll2012!!” as the password.
Click the “Options” button to expand the form and then select “LittleBearRiverODM” from the
“Database” drop down list. When your window looks like the following, click the “OK” button.

You are now connected to the LittleBearRiverODM database on the class SQL Server and have assigned
that connection to an object in R called “channel.” We will now use the “channel” object to get some
data.

Retrieving the Required Data

For this ILO, we are concerned about concentrations and daily loads of total phosphorus for the Little
Bear River at Mendon Road, which is just upstream of where the Little Bear River flows into Cutler
Reservoir. We will need 2 time series of data from the database for this site: 1) continuous estimates of
total phosphorus concentrations derived from turbidity created by Spackman Jones et al. (2009); and 2)
continuous discharge estimates derived from stage measurements at the same location. These data are
regular time series, with valued every 30 minutes.

First, we need to determine which attributes of these time series are needed to query them from the
DataValues table in the ODM database. To do this, I cheated and opened SQL Server Management
Studio to look at the SeriesCatalog table in the LittleBearRiverODM database. The SeriesCatalog table
contains a convenient look up for all of the time series of data in the ODM database. Based on this, I

6

identified the following attributes that will enable us to query the correct time series of values into R for
analysis:

Estimated Total Phosphorus values (derived from turbidity)
SiteID = 1 (Little Bear River at Mendon Road)
VariableID = 48 (Phosphorus, total)
MethodID = 31 (Synthetic time series generated from continuous turbidity observations using surrogate
relationships.)
QualityControlLevelID = 2

Estimated Discharge values (derived from stage)
SiteID = 1 (Little Bear River at Mendon Road)
VariableID = 44 (Discharge)
MethodID = 29 (Discharge derived from water level measurements using a site specific stage-discharge
relationship.)
QualityControlLevelID = 2

Given the above attributes, I can construct two queries to get the total phosphorus and discharge data
from the database and loaded into R as DataFrame objects. The following code shows the how to
execute these queries:

#Get the total phosphorus time series
totalP <- sqlQuery(channel, paste("SELECT LocalDateTime, DataValue FROM DataValues WHERE SiteID =
1 AND VariableID = 48 AND MethodID = 31 AND QualityControlLevelID = 2 AND LocalDateTime >=
'1/1/2007 0:00' AND LocalDateTime < '1/1/2008 0:00' ORDER BY LocalDateTime ASC"), as.is = c(TRUE,
FALSE))

#Get the discharge time series
discharge <- sqlQuery(channel, paste("SELECT LocalDateTime, DataValue FROM DataValues WHERE
SiteID = 1 AND VariableID = 44 AND MethodID = 29 AND QualityControlLevelID = 2 AND LocalDateTime
>= '1/1/2007 0:00' AND LocalDateTime < '1/1/2008 0:00' ORDER BY LocalDateTime ASC"), as.is = c(TRUE,
FALSE))

The result of executing these lines of code is two R DataFrame objects (one called “totalP” for total
phosphorus and one called “discharge” for discharge). Each DataFrame contains two columns of data –
the LocalDateTime and DataValue. Looking more closely at these lines of code, we are calling a function
called “sqlQuery” that is part of the RODBC package. We are assigning the result of the function call to
an R data frame object (the data frames are called “totalP” and “discharge”). We are passing the
“sqlQuery” function the name of the channel to the database (which we called “channel”) and a string
representing the SQL query to be executed. The final parameter “as.is=c(TRUE,FALSE)” tells R to treat
the first column that is returned (LocalDateTime) as a string and the second column (DataValue) as
whatever is returned from the database.

Bear with me here - RODBC seems to have trouble with retrieving date/times from a SQL Server
database, which is why we need to use the “as.is” function as a work around. Despite all of my best
attempts, R was truncating the times off of the LocalDateTime values if I didn’t use the “as.is” parameter
to import the LocalDateTimes as strings. But, since we are telling R to bring the LocalDateTime column
into the data frame objects as character strings, we have to then convert the character strings to the

7

correct date/time data type in R so we can make plots of the data and match concentration and
discharge observations in time. To convert the LocalDateTime values from character strings to
date/times in R (the R data type for date/time values is called “POSIXct”), we need to execute the
following lines of code:

#Make sure R is handling the LocalDateTime correctly – convert from character strings to POSIXct
totalP$LocalDateTime <- as.POSIXct(totalP$LocalDateTime, tz = "MST")
discharge$LocalDateTime <- as.POSIXct(discharge$LocalDateTime, tz = "MST")

Each of these lines of code tells R to convert the LocalDateTime vector in the data frame object (either
“totalP” or “discharge”) from a character string to the R POSIXct data type with a time zone of Mountain
Standard Time (MST).

If you want to know what the structure of the data frame object (or any other object in R) is, you can use
the “str” function as follows:

#Have a look at the structure of the totalP data frame object
str(totalP)

R will return to you a description of the number records in the DataFrame, the names of each of the
“columns,” the data type for each column, and samples of the values in each column.

'data.frame': 17148 obs. of 2 variables:
 $ LocalDateTime: POSIXct, format: "2007-01-01 00:00:00" "2007-01-01 00:30:00" ...
 $ DataValue : num 0.025 0.0244 0.0256 0.0249 0.0263 ...

If you want some summary statistics for a column in a data frame object, you can use the “summary”
function. In the following code, we call the “summary” function and pass it the name of the data frame
and the name of the column within the data frame separated by the “$” character. This is the method
for identifying the column in the data frame that you want to operate on.

#Get a statistical summary of the DataValue column in the totalP DataFrame.
summary(totalP$DataValue)

 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01507 0.03904 0.08967 0.09895 0.13050 0.35580

Plotting the Data

Next, you probably want to know what these data look like. We can easily create a customized plot of
the data in R. The “plot” function demonstrated by the following line of code will generate an x-y
scatter plot of the total phosphorus estimates versus time:

#Create a scatter plot of the estimated total phosphorus concentrations
plot(totalP$LocalDateTime, totalP$DataValue)

The result of this line of code will look like the following:

8

If we are putting this plot in a report or a publication, we need to add some niceties. Let’s regenerate
the plot and superimpose the water quality criterion value to get a visual indication of how many
exceedences there are. The following line of code shows how you can set the plot type to a line and
specify the x and y-axis labels. Then the “abline” function is used to add the red line indicating the water
quality criterion value:

#Create the plot again, but as a line time series with axis labels
plot(totalP$LocalDateTime, totalP$DataValue, type = "l", xlab = "Date", ylab = "Total Phosphorus
(mg/L)")
#Add a red line indicating the water quality criterion value using the “abline” function
abline(h = 0.05,col = "red")

The resulting plot looks like the following:

9

Oooooohhhhh…. Water quality is not so hot in the Little Bear River at Mendon road with respect to
total phosphorus concentrations!!!

So, in a couple of lines of code we have created a nice looking time series plot that we can include in a
publication, and we can generate it any time we want using the same code. You may want to include
this plot and perhaps a plot of the discharge time series in your report. You can size the plot however
you want it by dragging the edge of the plot window to resize it. To export it, right click on it and select
“Copy as Metafile” or “Copy as Bitmap.”

Calculating Percent Exceedence for Concentrations

To report to the state, we need to know what percentage of the time total phosphorus concentrations
are exceeding the 0.05 mg/L numeric criterion value. We will calculate the percent exceedence of the
water quality criterion value for total phosphorus by examining the “totalP” data frame. We will
calculate the percent exceedence of the numeric water quality criterion value by calculating the number
of observations greater than the criterion value and dividing by the total number of observations. We
can use the “nrow” function to get a count of the number of rows in the “totalP” data frame and the
“subset” function within the “nrow” function to get a subset of the “totalP” data frame that contains
only values exceeding the criterion so we can get a count on that.

#Calculate the percent of time the concentration of total phosphorus exceeds the numeric criterion
#First get the total number of rows in the totalP data frame
totalRows <- nrow(totalP)
#Now get the number of rows in totalP where the DataValue is > 0.05
exceedRows <- nrow(subset(totalP, DataValue > 0.05))
#Now calculate the percent exceedence of the criterion value
exceedencePercent <- 100 * exceedRows / totalRows

10

#Tell R to print the value of the exceedencePercent to the console
exceedencePercent

I’ll let you calculate the actual exceedence percentage so that you can report it in your assignment.
However, suffice it to say that water quality isn’t as good as it could be in the Little Bear River at
Mendon Road.

Calculating Percent Exceedence for Daily Loads

Finally, we want to know how often the daily load of total phosphorus is exceeding the 9 kg/day target
load set forth in the existing Little Bear River Total Maximum Daily Load document (Utah DWQ, ????). To
calculate daily loads, we need to combine our 30-minute discharge time series with our 30-minute total
phosphorus time series to estimate daily loads. We will do this using the data we have already selected
for the year 2007.

Let’s check to make sure that we have the same number of rows in each of the data frames.

#Get the number of rows in each data frame
nrow(totalP)
nrow(discharge)

Unfortunately, the number of rows is not the same for each data frame. This is because the QA/QC
procedure may have removed a different number of data values from the raw data from which these
estimates were made (i.e., stage and turbidity).

Given that we have differing numbers of rows, let’s call a function that will create a new data frame
object that contains one LocalDateTime column, one “discharge” column, and one “totalP” column,
adding only rows for times where values for both discharge and total phosphorus exist. We can use the
“merge” function to do this.

#Create a new data frame containing both discharge and total phosphorus
newDataFrame <- merge(discharge, totalP, by = "LocalDateTime")

The “merge” function does exactly what we want it to do, but if we check out the structure of
“newDataFrame” using the “str” function, it looks like the following:

'data.frame': 17143 obs. of 3 variables:
 $ LocalDateTime: POSIXct, format: "2007-01-01 00:00:00" "2007-01-01 00:30:00" ...
 $ DataValue.x : num 106 106 106 106 106 ...
 $ DataValue.y : num 0.025 0.0244 0.0256 0.0249 0.0263 ...

Since each of the DataFrames input to the “merge” function had a “LocalDateTime” column and a
“DataValue” column, in the “newDataFrame” object we have one “LocalDateTime” column and two
DataValue columns (the first one for discharge, and the second one for total phosphorus). This will be
difficult to keep track of, so let’s just rename them using the following code:

11

#Rename the columns in the newDataFrame object that we just created
colnames(newDataFrame) <- c("LocalDateTime", "Discharge", "TotalP")

Next we can calculate the total phosphorus loading that occurs for each half hour time step by
multiplying the estimated total phosphorus concentration for each time step by the discharge value and
an appropriate conversion factor. The following code does this and adds the result to “newDataFrame”
as a new column:

#Add a new column called "TPLoad" to the data frame that is the incremental total phosphorus load in
#kg for each time step – 0.0509702 is a conversion factor to get to kg
newDataFrame$TPLoad <- newDataFrame$Discharge * newDataFrame$TotalP * 0.0509702

Now that we have the incremental total phosphorus loads for each 30-minute time step, we have to
aggregate the half-hourly loads to daily loads so we can compare the resulting values to the daily target
load from the TMDL document (9 kg/day). For this we will use a function called “aggregate.” The
“aggregate” function takes a data frame or vector object as an input and sums the values in the rows
using a grouping parameter. In this case, we want to group the load values for each calendar day and
then calculate a total load for each day. To create the grouping values, we can use the “as.Date”
function applied to the “LocalDateTime” column in the “newDataFrame.” The “as.Date” function
converts whatever you give it to a calendar date (of form “yyyy-mm-dd”). In this case it will strip the
times from the “LocalDateTime” column and leave us with the calendar dates to group by. Finally, in the
aggregate function we have to specify the function that will be used to aggregate values. In this case we
want the “sum.” The following code shows how to use the aggregate function to get daily total
phosphorus load values.

#Create a new data frame from the "TPLoad" column of the "newDataFrame" that contains the daily
#total phosphorus loads in kg
dailyLoads <- aggregate(newDataFrame$TPLoad, by = list(as.Date(newDataFrame$LocalDateTime, tz =
"MST")), FUN = sum)
#Set the column names of the new dailyLoads data frame
colnames(dailyLoads) <- c("LocalDate", "TPLoad")

Let’s create a plot of the calculated daily loads so we can visually compare the calculated values with the
target daily load from the TMDL document. Similar to the plots above, the following code shows how to
create the plot:

#Plot the daily loads as a time series with a red line indicating the daily target load
plot(dailyLoads$LocalDate, dailyLoads$TPLoad, type = "b", xlab = "Date", ylab = "Total Phosphorus Load
(kg)")
abline(h = 9, col = "red")

12

You will probably want to put a copy of this plot in your report.

Now, the very last step is to calculate the percent of time that the daily load values exceed the 9 kg/day
target load. To do this we need to calculate the number of days where the load exceeds 9 kg and then
divide by the total number of days and multiply by 100 to convert to percent.

#Calculate the percent of time the daily load exceeds 9 kg
totalRows <- nrow(dailyLoads)
exceedRows <- nrow(subset(dailyLoads, TPLoad > 9))
exceedencePercent <- 100 * exceedRows / totalRows
exceedencePercent

I’ll let you execute the code above to calculate the actual exceedence percentage so that you can report
it in your write-up.

13

References

Spackman Jones, A., D. K. Stevens, J. S. Horsburgh, and N. O. Mesner (2011), Surrogate measures for

providing high frequency estimates of total suspended solids and total phosphorus concentrations,
Journal of the American Water Resources Association, 47(2), 239-253,
http://dx.doi.org/10.1111/j.1752-1688.2010.00505.x.

Utah DWQ (????), Little Bear River Watershed TMDL, State of Utah Department of Environmental

Quality, Division of Water Quality, Salt Lake City, UT,
http://www.waterquality.utah.gov/TMDL/Little_Bear_River_TMDL.pdf.

http://dx.doi.org/10.1111/j.1752-1688.2010.00505.x
http://www.waterquality.utah.gov/TMDL/Little_Bear_River_TMDL.pdf

